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Abstract. Intelligent Environments (IEs) have specific computational 
properties that generally distinguish them from other computational systems.  
They have large numbers of hardware and software components that need to be 
interconnected.  Their infrastructures tend to be highly distributed, reflecting 
both the distributed nature of the real world and the IEs’ need for large amounts 
of computational power.  They also tend to be highly dynamic and require 
reconfiguration and resource management on the fly as their components and 
inhabitants change, and as they adjust their operation to suit the learned 
preferences of their users.  Because IEs generally have multimodal interfaces, 
they also usually have high degrees of parallelism for resolving multiple, 
simultaneous events.  Finally, debugging IEs present unique challenges to their 
creators, not only because of their distributed parallelism, but also because of 
the difficulty of pinning down their “state” in a formal computational sense.  
This paper describes Metaglue, an extension to the Java programming language 
for building software agent systems for controlling Intelligent Environments 
that has been specifically designed to address these needs.  Metaglue has been 
developed as part of the MIT Artificial Intelligence Lab’s Intelligent Room 
Project, which has spent the past four years designing Intelligent Environments 
for research in Human-Computer Interaction.   

Introduction     

                                                           
This material is based upon work supported by the Advanced Research Projects Agency of the 
Department of Defense under contract number F30602—94—C—0204, monitored through 
Rome Laboratory.   

Research on highly interactive spaces, generally known as Intelligent Environments, 
has become quite popular recently. Although their precise applications, perceptual 
technologies, and control architectures vary a great deal from project to project, the 
raisons d’être of these systems are generally quite similar.  They are aimed at 
allowing computational systems to understand people on our own terms, frequently 
while we are busy with activities that have never before involved computation.  IEs 



 
 

 

seek to connect computational systems to the real world around them and the people 
who inhabit it.   

This paper presents what we believe are general computational properties and 
requirements for IEs, based on our experience over the past four years with the 
Intelligent Room Project at the MIT Artificial Intelligence Lab.  Although many of 
the published descriptions of IEs [4] differ in their particulars, it is clear that we have 
not been alone in confronting some of the frustrating aspects of engineering these 
complex systems.  

Based on this experience, we have developed Metaglue, a specialized language for 
building systems of interactive, distributed computations, which are at the heart of so 
many IEs.  Metaglue, an extension to the Java programming language, provides 
linguistic primitives that address the specific computational requirements of 
intelligent environments.  These include the need to: interconnect and manage large 
numbers of disparate hardware and software components; control assemblies of 
interacting software agents en masse; operate in real-time; dynamically add and 
subtract components to a running system without interrupting its operation; 
change/upgrade components without taking down the system; control allocation of 
resources; and provide a means to capture persistent state information. 

Metaglue is necessary because traditional programming languages (such as C, 
Java, and Lisp) do not provide support for coping with these issues.  There are 
currently several other research systems for creating assemblies of software agents 
[7,8,9], which provide low-level functionality, e.g., support for mobile agents and 
directory services.  These features are necessary but not sufficient.  Because Metaglue 
provides high-level tools specifically relevant to creating software controllers for IEs, 
we hope to make it available for more widespread use by the IE community. 

Much of our discussion will focus on Hal, our most recently constructed Intelligent 
Room [3,5], where approximately 100 Metaglue agents control Hal and interconnect 
its components.  However, we believe the issues raised here extend beyond the 
particulars of Hal and are important for a wide range of intelligent environments.  

 Hal is a small room within our lab and is equipped with microphones, seven video 
cameras, and a variety of audio-visual output devices that it can directly control.  Hal 
was designed to explore a wide range of interactions involving futuristic residential 
spaces – stressing quality of life – and commercial spaces – stressing information 
management.  We have therefore created applications in Hal that support 
entertainment, teleconferencing, business meetings, military command post scenarios, 
and information retrieval.  

Next, we expand on our list of computational properties for IEs and examine the 
reasons behind them.  We then discuss design considerations of the Metaglue system, 
and how it specifically addresses the perceived needs of IEs.  In this, we directly trace 
how the issues raised in the next section are satisfied by capabilities incorporated into 
Metaglue. Finally, we close with an evaluation of the Metaglue system and directions 
for future research.   



 
 

 

Computational Properties of Intelligent Environments 

Intelligent Environments by and large share a number of computational properties due 
to commonalties in how they internally function and externally interact with their 
users.  Of course, not every IE will identically share all of these characteristics, but 
we believe examining them even briefly makes concrete many of the issues that IE 
designers are faced with and should address directly.  We not only hope to further 
discussion on these issues in the IE community, but to motivate the development of 
other general purpose tools such as Metaglue. 

We note that when multiple people are allowed to interact simultaneously with a 
single IE, many of the issues discussed below are greatly exacerbated.  Space 
limitations preclude addressing this issue in detail. 

Distributed, modular systems need computational glue 
Intelligent Environments contain a multitude of subsystems comprising their 
perceptual interfaces, software applications, hardware device connections, and 
mechanisms for internal control.  Even though each IE is created in its own way for 
its own purpose, IEs are generally built out of similar components.    

Thus, IEs require some way to glue all of these components together and 
coordinate their interactions.   These components also generally cannot co-exist on a 
single computer, due to hardware constraints and the need for environments to 
respond in real-time to their users.  It is not uncommon for individual computer vision 
or speech understanding applications to consume the resources of an entire 
workstation, and there is no reason to believe this exclusivity will be diminished as 
processor speeds increase in the future.  Many of these systems perform progressive 
real-time searches that naturally generalize to consume all increases in available 
computational power. 

Frequently, these components, either off the shelf or research programs in their 
own right, are not designed to work together, so not only must they be connected, but 
there needs to be some way of expressing the “logic” of this interconnection.  In other 
words, inter-component connections are not merely protocols, but must also contain 
the explicit knowledge of how to use these protocols.  Thus, viewing the connections 
simply as Application Programming Interfaces (APIs) is insufficient.  For example, 
consider connecting a speech recognition system and a web browser, so that users can 
navigate links by speaking the text contained in them.  Here, the computational glue 
would include a mechanism that dynamically updates a recognition grammar with the 
link text whenever the user goes to a new web page; simply having APIs to both of 
these applications is necessary but not sufficient. 

More generally, enormous amounts of control code go into building IEs, much of it 
dealing with how connections among its pieces should be managed.  (See [1,2].) 

Resource management is essential 
Interactions among system components in an IE can be exceedingly complex.  
Resources, such as video displays or computational power, can be scarce and need to 
be shared among different applications.  For example, in Hal, multiple computer 
vision systems share individual video cameras because they are a relatively expensive 



 
 

 

resource [6].  Conflicts can occur when multiple applications in an IE all want to 
display information on a single video display or speak to the user simultaneously.  
One of the largest surprises while developing Hal was that even seemingly simple 
issues, such as displaying a video, have wide spread repercussions on other parts of 
the running system because their resources are pulled out from under them.  We 
discuss this at greater length in the next section.  Finally, even in an environment with 
ample resources for a single user, conflicts can unknowingly arise when multiple 
people attempt to interact with it simultaneously. 

Thus, IEs need sophisticated resource management capabilities, particularly to let 
them scale properly as new applications and capabilities are added. 

Configurations change dynamically 
IEs can be highly dynamic systems.  In the prescient words of Weiser – referring to 
Ubiquitous Computing but equally relevant to IEs – “New software … may be needed 
at any time, and you’ll never be able to shut off everything in the room at once … 
functionality may shrink and grow to fit dynamically changing needs” [12].  People 
may come and go at will, bringing with them devices such as PDAs that temporarily 
connect with an IEs existing computational infrastructure.   

In a developing system such as Hal, new hardware and software components are 
incorporated on a regular basis.  It should be possible to add them to a running system 
without restarting unrelated components.  In fact, under many circumstances, new 
permanent components should dynamically integrate themselves into an IE without 
interrupting its operation at all. 

Even within the confines of a static IE, users may readily switch between different 
aspects of its functionality.  For example Hal supports teleconferencing and 
information management applications and users readily switching between the two is 
quite natural; often during meetings the need arises to get more information about 
something.  These “context” changes can have far reaching effects.  For example, an 
IE may need to simultaneously start new underlying applications, activate different 
speech recognition grammars, and modify the configurations of other perceptual 
systems. 

State is precious 
Not only may new components need to be incorporated into a running IE, but pieces 
of a running system may need to be reloaded into it as well.  As with any other 
software engineering effort, creating IEs require an iterative edit-recompile-run 
process while testing new features and eliminating bugs.  However, if the entire 
system had to be restarted each time one of its components changed, development 
would be prohibitively time-consuming. Our Hal environment has literally dozens of 
hardware and software components connected to approximately 100 Metaglue agents.  
Having to bring this system completely down to modify it would long ago have made 
further development a cause of endless frustration. 

Furthermore, IEs acquire state through interactions with users.  Attempting to trace 
a bug by forcing a person to repeat a sequence of interactions that may have spanned 
several hours would be outrageous.  To exacerbate the problem, state is acquired not 
only through human interactions, but also through any activities Hal has engaged in, 



 
 

 

such as information retrieval.  A weather report or CNN headline that caused Hal to 
take some action may have long since changed and is not recoverable.  

The most critical part of Hal’s state comes from information it learns while 
observing its users.  Hal has several machine learning systems for learning about 
users’ preferences and activities.  These systems have no straightforward way to 
unlearn and return to a previous coherent state. Checkpointing in the style of reliable 
transaction systems can partially ameliorate these problems with respect to the local 
state of individual components.  However, when IEs are asynchronous and 
distributed, repeating a particular global state can be, practically speaking, impossible 
to achieve.  (One technique we have been investigating is allowing an IE to 
essentially simulate itself by replaying previously observed and recorded events.) 

Thus, there is a clear need for an IE’s software architecture to permit a kind of 
dynamism rare in conventional computational systems.  We would like to stop, 
modify, and reload components of a running system and have them reintegrate into 
the overall computation with as much of their state intact as possible. 

IEs model the parallelism of the real world 
Supporting natural human computer interaction requires that IEs have some handle on  
multiple ways that a user may interact with them.  People speak, gesture, move, and 
emote simultaneously, and IEs need to have some capacity to cope with this, even on 
the part of a single user.   This is not to say they need to understand the full range of 
human discourse to be useful.  Far from it, IEs that consistently – and most 
importantly, predictably – understand a small subset of interactions are far preferable 
from an HCI perspective to ones that always leave users guessing if some particular 
input will be understood.   

Nevertheless, IEs generally have multimodal interfaces which requires they have 
sufficient parallelism for resolving multiple, simultaneous events.  For example, if a 
user walks to a displayed map, points somewhere and says, “What’s the weather here 
today?” and then immediately walks away, the system must be able to discover where 
they were pointing when they said the word “here.”  Dealing with multiple users 
simultaneously again simply exacerbates the problem. 

Thus, IEs need at least as much parallelism as the phenomena they are trying to 
understand.  In fact they may need a great deal more for background processing, 
which leads to the next item. 

Real-time response 
It almost goes without saying that IEs need to be responsive to their users.  
Particularly due to the fact that many IEs do not have traditional computer monitors 
so users can get a handle of the system’s inner activity, it is astonishingly frustrating 
when an IE does not respond quickly to user input.  This is another point supporting 
the basic need for parallel architectures in an IE.  The parts of the system that 
acknowledge and react to users must be immediately responsive even if other parts of 
the system, for example, in the midst of processing an information retrieval query, 
require more time to respond.  

This also requires that the mechanism for interconnecting an IE’s components and 
processing their data be able to keep up with the underlying external systems.  For 



 
 

 

example, in Hal, five C-language-based computer vision systems, each producing 
several hundred dimensional data vectors at a rate of up to 30 a second, all connect to 
a Metaglue-based visual event classification system which must process all this data 
in real-time. 

Debugging is difficult 
Independently of IEs, debugging distributed, asynchronous systems can be a 
nightmare.  If some high-level system event fails to occur, determining which 
component is to blame is usually a long, involved process. Furthermore, 
understanding the operation of distributed, loosely coupled components running in 
parallel – as does the controller for an IE – where different serializations can have 
different system-wide effects, is best, but rarely successfully, avoided.  In an IE, this 
problem is made all the worse by the presence of many, sometimes exotic, hardware 
components, such as video multiplexers, that themselves have internal state that may 
only be imperfectly modeled in their software drivers. 

Good software engineering practices go a long way towards dealing with this 
problem, but a more comprehensive solution would require the development of new 
types of debugging strategies.  (In the next section, we see that Metaglue only makes 
the most preliminary efforts in this direction.)  

Metaglue 

We first discuss the design of Metaglue from a programming language perspective, to 
give potential users a sense of what it would be like to work with it.  We then proceed 
to illustrate how particular features in Metaglue address many of the computational 
requirements for IEs discussed in the previous section.   By necessity, this section is 
intended only to sketch and motivate the capabilities of the Metaglue system and 
should not be viewed as a complete description of the language.  More detail about 
Metaglue’s internals can be found in [10,11].  (Some examples in this section require 
cursory knowledge of the Java programming language.) 

The Design 
Metaglue is an extension to the Java programming language that introduces a new 
Agent class.  By extending this class, user-written agents can access the special 
Metaglue methods discussed below.  Metaglue has a post-compiler, which is run over 
Java-compiled class files to generate new Metaglue agents.  Metaglue also includes a 
runtime platform, called the Metaglue Virtual Machine, on which its agents run.  The 
overhead added by this infrastructure to standard Java programs that are turned into 
Metaglue agents is negligible. 

Our goal with Metaglue was to add a very small number of primitives to the Java 
language to make it easy to write agents.  Method invocations between agents, even if 
they are on different workstations, look exactly like local method calls in Java.  Thus, 
Metaglue agents, minus the few Metaglue-specific primitives, look almost exactly 
like ordinary Java programs.  This makes it easy to transform regular Java source files 
into Metaglue agents, which enormously adds to Metaglue’s value as computational 



 
 

 

glue.  We call the process of transforming previously existing programs into agents 
wrapping. 

Almost as much time has gone into formulating Metaglue’s semantics as to 
programming the system itself.  We sought to provide a focused set of primitives for 
managing systems of distributed, interacting agents and to avoid the temptation of 
creeping featurism.  By stressing simplicity, anyone proficient in Java can pick up 
Metaglue very quickly, and the small number of new primitives makes it easy to 
learn, remember, and use the system. 

In the remainder of this discussion, it will be helpful to keep in mind that running a 
Metaglue system first involves starting Metaglue Virtual Machines on all the 
computers that are involved.  Our machines are generally configured to start these 
when they are booted.1 

The Capabilities 
Metaglue offers the following capabilities, each of which we will address in turn: 
 
1. Configuration management 
2. Establish and maintain the configuration each agent specifies  
3. Establish communication channels between agents 
4. Maintain agent state 
5. Introduce and modify agents in a running system  
6. Manage shared resources 
7. Event broadcasting 
8. Support for debugging 
 
Metaglue has a powerful naming scheme for agents that is beyond the scope of this 
document.  We will use here the simplest form of it, the name of the Interface file of 
an agent, which is in the Java class package format, e.g., an agent for controlling a 
television might be referenced by device.Television.     

1. Configuration Management 
Metaglue has an internal SQL database for managing information about agent’s 
modifiable parameters (called Attributes), storing their internal persistent state, and 
giving agents fast, powerful database access.2 

Attributes contain information that might otherwise be hardcoded inside agents and 
difficult to modify, for example, what workstation the agent needs to run on or 
parameters that affect its operation.  Metaglue has a web-based interface for 
modifying Attributes, which can be changed even while an agent is running.  This is 
one of Metaglue’s mechanisms for both configuring a system of agents and 
interacting with it while it is operational. 

                                                           
1 For reference, this has the computational overhead of running one Java Virtual Machine, 

which is close to unnoticeable on modern Pentium-based systems. 
2 The use of an internal database helps enormously in dealing with Java’s poor file access 

capabilities.  Agents use the database rather than store information in files, which is 
particularly important because agents can move to different machines while they are running. 



 
 

 

This is code an agent would use to get its location Attribute from Metaglue’s built 
in database: 

 
Attribute location = new Attribute(“location”);
System.out.println(“I run on “ + location.getValue()); 

2. Agent Configurations 
Metaglue agents can specify particular requirements that the system must insure are 
satisfied before they are willing to run.  These can include the name of a particular 
computer they must be run on; specifications for particular types of hardware they 
require access to; and more abstract capabilities that must be available on whichever 
Metaglue Virtual Machine (MVM) they are run on. These are expressed with the 
tiedTo() primitive, as in: 

 
tiedTo(location.getValue());
tiedTo(capability.FrameGrabber);
tiedTo(device.Television); 

 
If an agent is started on an MVM that does not meet its stated requirements, Metaglue 
will move it somewhere else that does.  If Metaglue needs to restart an agent due to 
localized hardware or software failure, it will attempt to find an alternative MVM on 
which to run the agent that also satisfies these requirements.  (See item 5.) 

3. Agent Connections 
Because Metaglue is intended as computational glue, it needs to establish paths of 
communication between agents, regardless of where they are running. The 
reliesOn() primitive connects agent with capabilities  they can request services 
from.  For example, to use Hal’s speech synthesizer, an agent might contain: 
 

Agent speechSynthesizer = reliesOn(speech.Synthesizer);
speechSynthesizer.say(“Hello! How are you?”); 

 
The reference to speech.Synthesizer refers to an abstract capability, not a 
particular agent.  Because agents refer to each other by their capabilities and not 
directly by name, new agents can easily be added to the system that implement 
preexisting capabilities without modifying any of the agents that will make use of 
them.  (A more sophisticated way of obtaining capabilities is described in the 
Metaglue resource manager below.) 

Metaglue will try to locate an agent that provides the requested capability on any of 
the system’s computers’ MVMs and return a reference to it to the caller. Metaglue has 
an internal directory called a Catalog that it uses to find agents once they are started.  
Metaglue agents automatically register their capabilities with the Catalog when they 
are run. 

If no agent offering this capability is found, Metaglue automatically starts one and 
invisibly insure that it continues running as long as it is in use.   

The reliesOn() primitive makes it very easy to interconnect agents with a 
single line of code.  Reliance is also a transitive operation.  For example, starting the 



 
 

 

single Hal demo agent results in the entire Hal system being loaded because of their 
chain of reliances.  Also, because they have been formally relied upon, Metaglue will 
attempt to insure that they continue running indefinitely, as discussed below. 

4. Agent State 
Agents can use Metaglue’s freeze() and defrost() primitives to store and 
subsequently retrieve their fields from Metaglue’s internal SQL database.  The 
standard way of doing this is having an agent directly freeze its state when it is 
shutting down (or at any other appropriate time), and subsequently defrost itself in its 
constructor the next time it is started up.  Other aspects of an agent’s state, e.g., its 
connections to other agents, are internally maintained by Metaglue and generally do 
not need to be specifically managed by the agents themselves. 

As of yet, we do not have a well-defined schema for capturing the global state of 
all the agents in a running Metaglue system. 

5. Modifying a running system 
Metaglue will attempt to keep a running system of agents alive.  If an agent is 
manually stopped, for example, during debugging, the agents that rely upon it will by 
default simply wait for it to return in the event they need to access it.  When the user 
restarts the agent, it will reload its frozen state and simply pick up where it left off, 
first dealing with any pending requests from other agents. 

It is also possible to programmatically specify actions, other than simply waiting, 
that an agent can do if someone it relies upon is stopped.  For example, it might 
temporarily switch to another active agent that offers the same capabilities.  
Metaglue’s resource management can help the system in the event capabilities must 
be shared due to part of the system being unavailable. 

If an agent dies because of unanticipated hardware or software failure, Metaglue 
will try to restart it automatically, switching to another MVM if necessary, but still 
meeting the agent’s required configuration if possible.  It is important to note that 
unanticipated crashes may cause state information to be lost, and agents who are 
sensitive to this should refuse to be automatically restarted.  For example, an agent 
that controls Hal’s lighting systems may not know whether the lights are on or off if it 
is restarted after a crash because the state information it defrosts may be inaccurate.  
However, in that case, it can simply ask Hal’s vision agents whether they can see 
anything, and thereby determine the state of the lights in the room.  An agent running 
part of an application, however, could be started out of sync with the rest of the 
system, and manual intervention may be required to correct the problem.   

Interestingly, the Metaglue system is itself recursively constructed out of a special 
set of Metaglue agents.  These agents have the full functionality of the system 
available to them, so they can for example, use Hal’s speech synthesizer to let users 
know of internal problems in the system and ask for help resolving them. 

6. Managing shared resources 
Among the largest and most complex systems in Metaglue is its resource manager.  
Before it existed, agents in Hal simply grabbed the resources they needed and 
configured them at will.  That a resource management system was necessary became 



 
 

 

apparent when Hal developed to the point that its multiple applications conflicted 
with one another and could no longer be run simultaneously. Additionally, for an 
agent to simply rely on the resources it wants to use, it has to know both what 
resources exist and are available.  As devices and other agents dynamically come and 
go in the system, this means that every agent would need to keep track of the different 
resources that offer the sets of capabilities it needs.  We discussed above that agents 
may temporarily make use of substitutes if the agents they generally rely upon are 
unavailable.  Where should that knowledge of possible alternatives come from? 

The resource system in Metaglue allows agents to request functionality at a very 
high-level, without being concerned with how it is provided or resolving resource 
conflicts among themselves.  Metaglue has a hierarchical set of dealer agents that are 
responsible for distributing resources to the rest of the system.  There are a wide 
assortment of different prototype dealer agents available, each of which has its own 
specified internal logic for performing allocation, substitution, etc.  These dealers can 
be used directly by Metaglue programmers or extended to customize their operation. 

Dealers not only give out resources, but they can withdraw previously allocated 
ones to redistribute them, based on any of several priority and fairness schemes.  For 
example, there are dealers in Hal for allocating televisions, video projectors, and 
displays in general.  An agent must use the dealers to gain access to any of these.  If a 
higher priority agent needs access to a particular display, it will be temporarily 
withdrawn from the agent who has allocated it until it becomes available again, at 
which point it will be given back. 

7. Event Broadcasting 
In addition to agents making direct requests of one another through method calls, 
Metaglue agents can pass messages among themselves.  Agents can register with 
other agents, including the Metaglue system agents,  to find out about events going on 
in the system.  For example, an agent in Hal interested in greeting people by name 
when they walk inside the room, simply registers with the vision-based Entry agent to 
request messages about entrance events where the identity of the person can be 
determined.  When these events occur, it receives a message and uses the agent 
offering speech synthesis capability to say hello to them. 

We also use event broadcasts to notify groups of agents about context shifts in 
room applications to dynamically and uniformly modify Hal’s behavior. 

8. Debugging   
Metaglue has a graphical interface for examining a running system of agents called 
the Catalog monitor.  It displays all running agents and their reliance 
interconnections.  Clicking on an agent brings up a window in a read-eval-print loop, 
in which users can interactively call the agent’s methods. 

Metaglue also has a logging facility to manage and centralize agents’ textual 
output.  This can be useful for programmers to watch the output of particular agents 
without worrying about where they are running or where their output streams are 
being printed. 

We have found these capabilities quite useful, but would still prefer source level 
debugging of remote agents, a dynamic object browser, and ways to set breakpoints 



 
 

 

over whole groups of agents simultaneously.  At least some of these capabilities 
promise to be available shortly in commercial Java products and we hope to make use 
of them during Hal’s continued development. 

Discussion 

Evaluating the merits of a programming language can defy objectivity.  Nonetheless, 
Metaglue has been extraordinarily useful in building Hal, and it is highly doubtful Hal 
would have reached its present level of development with it.  Metaglue is a very 
stable system, and we have left large assemblies of agents running for up to a week 
without any difficulties.  (These systems were eventually stopped for development 
purposes.)    

We now reexamine each of the previously mentioned properties of IEs in the 
context of Metaglue.  
 
Distributed, modular systems need computational glue 
Metaglue not only provides a channel to interconnect Hal’s components, but it also 
provides the means to build applications for Hal.  Rather than use a special 
communication mechanism, such as CORBA or KQML, separate from the system’s 
internal controller, Metaglue allows us to reduce the amount of infrastructure by 
providing for both communication and control with a much lighter-weight system. 
 
Resource management is essential 
The resource management system in Metaglue not only offers a wide range of default 
behaviors, but it is easily customizable through Java’s class extension mechanism.  It 
is among Metaglue’s most developed systems and we are in the process of 
incorporating it into the applications that predated it. 
 
Configurations change dynamically 
Metaglue offers several mechanisms for coping with dynamically changing systems.  
The Configuration Manager and Attribute system allows users to reconfigure agents 
while they are running.  The fact that agents refer to each other by abstract 
capabilities means that new agents can be incorporated into a running system without 
modifying any of the agents that might rely upon them.  Metaglue’s ability to start 
and stop agents while leaving the rest of the system running allows us to dynamically 
“hotswap” components of a running computation.  Finally, by substituting new 
resource managers into a running system, new functionality can be added that 
previously no agents were aware of.   
 
State is precious 
Metaglue offers support for persistent local state in agents via its freeze and defrost 
mechanisms.  Notions of global state, however, remain illusive concepts.  

IEs model the parallelism of the real world 



 
 

 

Java is inherently multithreaded, which Metaglue inherits from it.  Metaglue’s 
resource management allows agents running in parallel to avoid conflicting with one 
another.  The event broadcast mechanism also simplifies communication among 
interacting groups of software agents running simultaneously. 

 
Real-time response 
The amount of overhead Metaglue adds to Java is minimal.  Our avoidance of 
heavyweight, specialized communication packages allows Metaglue agents to 
essentially run as quickly as Java’s Remote Method Invocation system.  Metaglue is 
now incorporated into “tight” loops in our code, along the most processor intensive 
critical paths, such as in our computer vision systems.  The development of JIT 
compilers for Java has enormously reduced our need to place perceptory components 
of our system into external C-language libraries. 

 
Debugging is difficult 
Metaglue certainly makes it possible to debug distributed agents systems, but one can 
hope for more.  There is reason to believe the Java community as a whole shares some 
of this interest and will takes steps in this direction. 

Future directions 
We are presently incorporating an expert system into Metaglue to allow more 
sophisticated reasoning about system configuration and resource management.  We 
are also creating a machine learning extension to Metaglue, which will incorporate 
pieces of the system described in [6]. 
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